Huber fitting¶
Huber fitting or the robust least-squares problem performs linear regression under the assumption that there are outliers in the data. The fitting problem is written as
\[\begin{array}{ll}
\mbox{minimize} & \sum_{i=1}^{m} \phi_{\rm hub}(a_i^T x - b_i),
\end{array}\]
with the Huber penalty function \(\phi_{\rm hub}:\mathbf{R}\to\mathbf{R}\) defined as
\[\begin{split}\phi_{\rm hub}(u) =
\begin{cases}
u^2 & |u| \le 1 \\
(2|u| - 1) & |u| > 1
\end{cases}\end{split}\]
The problem has the following equivalent form (see here for more details)
\[\begin{split}\begin{array}{ll}
\mbox{minimize} & u^T u + 2\,\boldsymbol{1}^T (r+s) \\
\mbox{subject to} & Ax - b - u = r - s \\
& r \ge 0 \\
& s \ge 0
\end{array}\end{split}\]
Python¶
import osqp
import numpy as np
import scipy as sp
from scipy import sparse
# Generate problem data
sp.random.seed(1)
n = 10
m = 100
Ad = sparse.random(m, n, density=0.5, format='csc')
x_true = np.random.randn(n) / np.sqrt(n)
ind95 = (np.random.rand(m) < 0.95).astype(float)
b = Ad.dot(x_true) + np.multiply(0.5*np.random.randn(m), ind95) \
+ np.multiply(10.*np.random.rand(m), 1. - ind95)
# OSQP data
Im = sparse.eye(m)
P = sparse.block_diag([sparse.csc_matrix((n, n)), 2*Im,
sparse.csc_matrix((2*m, 2*m))],
format='csc')
q = np.append(np.zeros(m+n), 2*np.ones(2*m))
A = sparse.bmat([[Ad, -Im, -Im, Im],
[None, None, Im, None],
[None, None, None, Im]], format='csc')
l = np.hstack([b, np.zeros(2*m)])
u = np.hstack([b, np.inf*np.ones(2*m)])
# Create an OSQP object
prob = osqp.OSQP()
# Setup workspace
prob.setup(P, q, A, l, u)
# Solve problem
res = prob.solve()
Matlab¶
% Generate problem data
rng(1)
n = 10;
m = 100;
Ad = sprandn(m, n, 0.5);
x_true = randn(n, 1) / sqrt(n);
ind95 = rand(m, 1) > 0.95;
b = Ad*x_true + 10*rand(m, 1).*ind95 + 0.5*randn(m, 1).*(1-ind95);
% OSQP data
Im = speye(m);
Om = sparse(m, m);
Omn = sparse(m, n);
P = blkdiag(sparse(n, n), 2*Im, sparse(2*m, 2*m));
q = [zeros(m + n, 1); 2*ones(2*m, 1)];
A = [Ad, -Im, -Im, Im;
Omn, Om, Im, Om;
Omn, Om, Om, Im];
l = [b; zeros(2*m, 1)];
u = [b; inf*ones(2*m, 1)];
% Create an OSQP object
prob = osqp;
% Setup workspace
prob.setup(P, q, A, l, u);
% Solve problem
res = prob.solve();
CVXPY¶
from cvxpy import *
import numpy as np
import scipy as sp
from scipy import sparse
# Generate problem data
sp.random.seed(1)
n = 10
m = 100
A = sparse.random(m, n, density=0.5, format='csc')
x_true = np.random.randn(n) / np.sqrt(n)
ind95 = (np.random.rand(m) < 0.95).astype(float)
b = A.dot(x_true) + np.multiply(0.5*np.random.randn(m), ind95) \
+ np.multiply(10.*np.random.rand(m), 1. - ind95)
# Define problem
x = Variable(n)
objective = sum(huber(A*x - b))
# Solve with OSQP
Problem(Minimize(objective)).solve(solver=OSQP)
YALMIP¶
% Generate problem data
rng(1)
n = 10;
m = 100;
A = sprandn(m, n, 0.5);
x_true = randn(n, 1) / sqrt(n);
ind95 = rand(m, 1) > 0.95;
b = A*x_true + 10*rand(m, 1).*ind95 + 0.5*randn(m, 1).*(1-ind95);
% Define problem
x = sdpvar(n, 1);
objective = huber(A*x - b);
% Solve with OSQP
options = sdpsettings('solver', 'osqp');
optimize([], objective, options);