Setup and solve¶
Consider the following QP
\[\begin{split}\begin{array}{ll}
\mbox{minimize} & \frac{1}{2} x^T \begin{bmatrix}4 & 1\\ 1 & 2 \end{bmatrix} x + \begin{bmatrix}1 \\ 1\end{bmatrix}^T x \\
\mbox{subject to} & \begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} \leq \begin{bmatrix} 1 & 1\\ 1 & 0\\ 0 & 1\end{bmatrix} x \leq \begin{bmatrix}1 \\ 0.7 \\ 0.7\end{bmatrix}
\end{array}\end{split}\]
We show below how to solve the problem in Python, Matlab, Julia and C.
Python¶
import osqp
import numpy as np
from scipy import sparse
# Define problem data
P = sparse.csc_matrix([[4, 1], [1, 2]])
q = np.array([1, 1])
A = sparse.csc_matrix([[1, 1], [1, 0], [0, 1]])
l = np.array([1, 0, 0])
u = np.array([1, 0.7, 0.7])
# Create an OSQP object
prob = osqp.OSQP()
# Setup workspace and change alpha parameter
prob.setup(P, q, A, l, u, alpha=1.0)
# Solve problem
res = prob.solve()
Matlab¶
% Define problem data
P = sparse([4, 1; 1, 2]);
q = [1; 1];
A = sparse([1, 1; 1, 0; 0, 1]);
l = [1; 0; 0];
u = [1; 0.7; 0.7];
% Create an OSQP object
prob = osqp;
% Setup workspace and change alpha parameter
prob.setup(P, q, A, l, u, 'alpha', 1);
% Solve problem
res = prob.solve();
Julia¶
using OSQP
using Compat.SparseArrays
# Define problem data
P = sparse([4. 1.; 1. 2.])
q = [1.; 1.]
A = sparse([1. 1.; 1. 0.; 0. 1.])
l = [1.; 0.; 0.]
u = [1.; 0.7; 0.7]
# Crate OSQP object
prob = OSQP.Model()
# Setup workspace and change alpha parameter
OSQP.setup!(prob; P=P, q=q, A=A, l=l, u=u, alpha=1)
# Solve problem
results = OSQP.solve!(prob)
R¶
library(osqp)
library(Matrix)
# Define problem data
P <- Matrix(c(4., 1.,
1., 2.), 2, 2, sparse = TRUE)
q <- c(1., 1.)
A <- Matrix(c(1., 1., 0.,
1., 0., 1.), 3, 2, sparse = TRUE)
l <- c(1., 0., 0.)
u <- c(1., 0.7, 0.7)
# Change alpha parameter and setup workspace
settings <- osqpSettings(alpha = 1.0)
model <- osqp(P, q, A, l, u, settings)
# Solve problem
res <- model$Solve()
C¶
#include "osqp.h"
int main(int argc, char **argv) {
// Load problem data
c_float P_x[3] = {4.0, 1.0, 2.0, };
c_int P_nnz = 3;
c_int P_i[3] = {0, 0, 1, };
c_int P_p[3] = {0, 1, 3, };
c_float q[2] = {1.0, 1.0, };
c_float A_x[4] = {1.0, 1.0, 1.0, 1.0, };
c_int A_nnz = 4;
c_int A_i[4] = {0, 1, 0, 2, };
c_int A_p[3] = {0, 2, 4, };
c_float l[3] = {1.0, 0.0, 0.0, };
c_float u[3] = {1.0, 0.7, 0.7, };
c_int n = 2;
c_int m = 3;
// Exitflag
c_int exitflag = 0;
// Workspace structures
OSQPWorkspace *work;
OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings));
OSQPData *data = (OSQPData *)c_malloc(sizeof(OSQPData));
// Populate data
if (data) {
data->n = n;
data->m = m;
data->P = csc_matrix(data->n, data->n, P_nnz, P_x, P_i, P_p);
data->q = q;
data->A = csc_matrix(data->m, data->n, A_nnz, A_x, A_i, A_p);
data->l = l;
data->u = u;
}
// Define solver settings as default
if (settings) {
osqp_set_default_settings(settings);
settings->alpha = 1.0; // Change alpha parameter
}
// Setup workspace
exitflag = osqp_setup(&work, data, settings);
// Solve Problem
osqp_solve(work);
// Cleanup
osqp_cleanup(work);
if (data) {
if (data->A) c_free(data->A);
if (data->P) c_free(data->P);
c_free(data);
}
if (settings) c_free(settings);
return exitflag;
};